If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2-6z-24=0
a = 1; b = -6; c = -24;
Δ = b2-4ac
Δ = -62-4·1·(-24)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{33}}{2*1}=\frac{6-2\sqrt{33}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{33}}{2*1}=\frac{6+2\sqrt{33}}{2} $
| 4(x-1)^2=240 | | x+(x+1)=240 | | 5(3x-4)=48 | | 12x-5=5x-12 | | 4x=-4x+48 | | 5=7s+9 | | 30-3f=14-f | | 9−7d=2d | | 39=u3 | | 18-p=p-2 | | 9{x+10=-63 | | 7q-2=4q+10 | | 4v=5v+4 | | 48=8(y–4) | | 2(x-3)+11=31 | | 3(x-3)+5=3x-3 | | x/12=30/120 | | x+7+2x=-8 | | -29+10=7x+5-6x | | x/5=49/35 | | -u/5=-49 | | x/4+7=35 | | k^2-8k+16=59 | | 1=v–25 | | 6^x-3=1296 | | 8(x-8)+26=8x-38 | | 7(s+2)=77 | | 4x+12=×-6 | | 8x-12=-172 | | x12=1060 | | 13v+2=11+5v | | 16.8=8c-8 |